Российские физики научились переводить с одного "квантового языка" на другой с помощью телепортации

Так выглядит установка для "телепортации" кубитов, использовавшаяся российскими учёными.

Так выглядит установка для "телепортации" кубитов, использовавшаяся российскими учёными.
Фото РКЦ

Александр Уланов, аспирант МФТИ, проводит юстировку установки, на которой проводился эксперимент.

Александр Уланов, аспирант МФТИ, проводит юстировку установки, на которой проводился эксперимент.
Фото РКЦ.

Так выглядит установка для "телепортации" кубитов, использовавшаяся российскими учёными.
Александр Уланов, аспирант МФТИ, проводит юстировку установки, на которой проводился эксперимент.
Физики из Российского квантового центра и Московского физико-технического института научились "переводить" квантовую информацию из одного ключевого способа хранения в другой. Развитие этой технологии приблизит эру оптических квантовых коммуникаций и квантового интернета.

Физики из Российского квантового центра (РКЦ) и Московского физико-технического института (МФТИ) научились "переводить" квантовую информацию из одного ключевого способа хранения в другой. Как сообщают авторы, развитие этой технологии приблизит эру оптических квантовых коммуникаций и квантового интернета.

Достижение описано в научной статье, опубликованной в журнале Nature Communications.

Напомним, что кубит, или квантовый бит, – это наименьшая единица хранения информации в квантовом компьютере. С точки зрения физики возможны два механизма хранения кубитов.

Во-первых, их можно кодировать с помощью дискретной физической величины. Такая величина имеет набор возможных значений и не допускает никаких промежуточных вариантов. Например, пусть набор её значений 1, 2, 3… Тогда она ни при каких обстоятельствах не может быть равна 1/2.

Есть ещё и непрерывные физические величины, которые могут принимать любые значения из определённого промежутка. Например, если диапазон возможных значений от 0 до 1, то она может быть равна и 1/2, и 1/3, и вообще любому числу, которое больше нуля и меньше единицы. Непрерывными величинами тоже можно кодировать кубиты.

Важно, что иногда для кодировки обоими способами можно использовать один и тот же физический объект, например, свет. Напряжённость электрического поля изменяется непрерывно, а поляризация фотона – дискретно.

Александр Уланов, аспирант МФТИ, проводит юстировку установки, на которой проводился эксперимент.

Поскольку различные квантовые системы имеют свои достоинства и недостатки, они подходят для выполнения различных задач. Поэтому учёные стремятся разработать подход, который позволил бы перекодировать квантовую информацию с одного "языка" на другой и обратно.

Очень соблазнительно было бы разработать такую технологию именно для света. Ведь электромагнитные волны – единственный реальный способ быстро передать информацию (в том числе квантовую) на большое расстояние. Однако до сих пор такую "технологию перевода" никому не удавалось создать. Именно эту задачу и решили физики из РКЦ и МФТИ.

В своей работе учёные сгенерировали два кубита, один на основе поляризации ("дискретный"), а другой – на основе напряжённости поля ("непрерывный"). Эти кубиты находились в состоянии квантовой запутанности. "Вести.Наука" (nauka.vesti.ru) подробно объясняли, что это такое.

Затем физики создали третий кубит, снова на основе поляризации. С его помощью они осуществили квантовую телепортацию. Это не та телепортация, которую мы привыкли видеть в кино. При квантовой телепортации не происходит физического перемещения объекта из точки А в точку Б. Передаётся лишь квантовое состояние с одной частицы на другую.

При телепортации фотон, несущий "поляризационный" кубит, уничтожился. Но его состояние – квантовая информация, содержащаяся в этом кубите, – не пропало. Оно перенеслось на "полевой" кубит, который был запутан с пропавшим "поляризационным".

Таким образом, информация была переведена из дискретного способа хранения в непрерывный. Как полагают авторы работы, можно осуществить и обратный процесс. То есть между двумя ключевыми способами хранения квантовой информации наконец переброшен мост, приближающий к реальности технологии завтрашнего дня.

"Объединение преимуществ квантовых состояний, закодированных в дискретных и непрерывных переменных, откроет новые горизонты для применения квантово-оптических технологий на практике", – комментирует Александр Уланов, один из авторов работы, аспирант МФТИ, научный сотрудник лаборатории квантовой оптики РКЦ.

Напомним, что "Вести.Наука" ранее писали о том, как российские физики повысили энергию света, отобрав у него фотоны, и разоблачили "квантового вампира".